Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 8(1): 353-362, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36599088

RESUMO

Pseudomonas aeruginosa is a ubiquitous multi-drug-resistant bacterium, capable of causing serious illnesses and infections. This research focuses on the development of a thermal sensor for the indirect detection of P. aeruginosa infection using molecularly imprinted polymers (MIPs). This was achieved by developing MIPs for the detection of pyocyanin, the main toxin secreted by P. aeruginosa. To this end, phenazine was used as a dummy template, evaluating several polymeric compositions to achieve a selective MIP for pyocyanin recognition. The sensitivity of the synthesized MIPs was investigated by UV-vis analysis, with the best composition having a maximum rebinding capacity of 30 µmol g-1 and an imprinting factor (IF) of 1.59. Subsequently, the MIP particles were immobilized onto planar aluminum chips using an adhesive layer, to perform thermal resistance measurements at clinically relevant concentrations of pyocyanin (1.4-9.8 µM), achieving a limit of detection (LoD) of 0.347 ± 0.027 µM. The selectivity of the sensor was also scrutinized by subjecting the receptor to potential interferents. Furthermore, the rebinding was demonstrated in King's A medium, highlighting the potential of the sensor for the indirect detection of P. aeruginosa in complex fluids. The research culminates in the demonstration of the MIP-based sensor's applicability for clinical diagnosis. To achieve this goal, an experiment was performed in which the sensor was exposed to pyocyanin-spiked saliva samples, achieving a limit of detection of 0.569 ± 0.063 µM and demonstrating that this technology is suitable to detect the presence of the toxin even at the very first stage of its production.


Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Pseudomonas aeruginosa , Piocianina , Técnicas Eletroquímicas
2.
Sensors (Basel) ; 24(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38202993

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a class of materials that have been widely used in the industrial production of a wide range of products. After decades of bioaccumulation in the environment, research has demonstrated that these compounds are toxic and potentially carcinogenic. Therefore, it is essential to map the extent of the problem to be able to remediate it properly in the next few decades. Current state-of-the-art detection platforms, however, are lab based and therefore too expensive and time-consuming for routine screening. Traditional biosensor tests based on, e.g., lateral flow assays may struggle with the low regulatory levels of PFAS (ng/mL), the complexity of environmental matrices and the presence of coexisting chemicals. Therefore, a lot of research effort has been directed towards the development of biomimetic receptors and their implementation into handheld, low-cost sensors. Numerous research groups have developed PFAS sensors based on molecularly imprinted polymers (MIPs), metal-organic frameworks (MOFs) or aptamers. In order to transform these research efforts into tangible devices and implement them into environmental applications, it is necessary to provide an overview of these research efforts. This review aims to provide this overview and critically compare several technologies to each other to provide a recommendation for the direction of future research efforts focused on the development of the next generation of biomimetic PFAS sensors.


Assuntos
Biomimética , Fluorocarbonos , Humanos , Carcinogênese , Carcinógenos , Indústrias
3.
Foods ; 11(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36141032

RESUMO

In recent years, melamine-sensing technologies have increasingly gained attention, mainly due to the misuse of the molecule as an adulterant in milk and other foods. Molecularly imprinted polymers (MIPs) are ideal candidates for the recognition of melamine in real-life samples. The prepared MIP particles were incorporated into a thermally conductive layer via micro-contact deposition and its response towards melamine was analyzed using the heat-transfer method (HTM). The sensor displayed an excellent selectivity when analyzing the thermal response to other chemicals commonly found in foods, and its applicability in food safety was demonstrated after evaluation in untreated milk samples, demonstrating a limit of detection of 6.02 µM. As the EU/US melamine legal limit in milk of 2.5 mg/kg falls within the linear range of the sensor, it can offer an innovative solution for routine screening of milk samples in order to detect adulteration with melamine. The results shown in this work thus demonstrate the great potential of a low-cost thermal platform for the detection of food adulteration in complex matrices.

4.
ACS Sens ; 6(12): 4515-4525, 2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34825565

RESUMO

Glucose bio-sensing technologies have received increasing attention in the last few decades, primarily due to the fundamental role that glucose metabolism plays in diseases (e.g., diabetes). Molecularly imprinted polymers (MIPs) could offer an alternative means of analysis to a field that is traditionally dominated by enzyme-based devices, posing superior chemical stability, cost-effectiveness, and ease of fabrication. Their integration into sensing devices as recognition elements has been extensively studied with different readout methods such as quartz-crystal microbalance or impedance spectroscopy. In this work, a dummy imprinting approach is introduced, describing the synthesis and optimization of a MIP toward the sensing of glucose. Integration of this polymer into a thermally conductive receptor layer was achieved by micro-contact deposition. In essence, the MIP particles are pressed into a polyvinyl chloride adhesive layer using a polydimethylsiloxane stamp. The prepared layer is then evaluated with the so-called heat-transfer method, allowing the determination of the specificity and the sensitivity of the receptor layer. Furthermore, the selectivity was assessed by analyzing the thermal response after infusion with increasing concentrations of different saccharide analogues in phosphate-buffered saline (PBS). The obtained results show a linear range of the sensor of 0.0194-0.3300 mM for the detection of glucose in PBS. Finally, a potential application of the sensor was demonstrated by exposing the receptor layer to increasing concentrations of glucose in human urine samples, demonstrating a linear range of 0.0444-0.3300 mM. The results obtained in this paper highlight the applicability of the sensor both in terms of non-invasive glucose monitoring and for the analysis of food samples.


Assuntos
Impressão Molecular , Glicemia , Automonitorização da Glicemia , Glucose , Humanos , Polímeros Molecularmente Impressos
5.
Polymers (Basel) ; 13(13)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34279364

RESUMO

The scope of the presented research orientates itself towards the development of a Molecularly Imprinted Polymer (MIP)-based dye displacement assay for the colorimetric detection of the antibiotic amoxicillin in aqueous medium. With this in mind, the initial development of an MIP capable of such a task sets focus on monolithic bulk polymerization to assess monomer/crosslinker combinations that have potential towards the binding of amoxicillin. The best performing composition (based on specificity and binding capacity) is utilized in the synthesis of MIP particles by emulsion polymerization, yielding particles that prove to be more homogenous in size and morphology compared to that of the crushed monolithic MIP, which is an essential trait when it comes to the accuracy of the resulting assay. The specificity and selectivity of the emulsion MIP proceeds to be highlighted, demonstrating a higher affinity towards amoxicillin compared to other compounds of the aminopenicillin class (ampicillin and cloxacillin). Conversion of the polymeric receptor is then undertaken, identifying a suitable dye for the displacement assay by means of binding experiments with malachite green, crystal violet, and mordant orange. Once identified, the optimal dye is then loaded onto the synthetic receptor, and the displaceability of the dye deduced by means of a dose response experiment. Alongside the sensitivity, the selectivity of the assay is scrutinized against cloxacillin and ampicillin. Yielding a dye displacement assay that can be used (semi-)quantitatively in a rapid manner.

6.
Molecules ; 25(22)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182534

RESUMO

The rapid sensing of drug compounds has traditionally relied on antibodies, enzymes and electrochemical reactions. These technologies can frequently produce false positives/negatives and require specific conditions to operate. Akin to antibodies, molecularly imprinted polymers (MIPs) are a more robust synthetic alternative with the ability to bind a target molecule with an affinity comparable to that of its natural counterparts. With this in mind, the research presented in this article introduces a facile MIP-based dye displacement assay for the detection of (±) amphetamine in urine. The selective nature of MIPs coupled with a displaceable dye enables the resulting low-cost assay to rapidly produce a clear visual confirmation of a target's presence, offering huge commercial potential. The following manuscript characterizes the proposed assay, drawing attention to various facets of the sensor design and optimization. To this end, synthesis of a MIP tailored towards amphetamine is described, scrutinizing the composition and selectivity (ibuprofen, naproxen, 2-methoxphenidine, quetiapine) of the reported synthetic receptor. Dye selection for the development of the displacement assay follows, proceeded by optimization of the displacement process by investigating the time taken and the amount of MIP powder required for optimum displacement. An optimized dose-response curve is then presented, introducing (±) amphetamine hydrochloride (0.01-1 mg mL-1) to the engineered sensor and determining the limit of detection (LoD). The research culminates in the assay being used for the analysis of spiked urine samples (amphetamine, ibuprofen, naproxen, 2-methoxphenidine, quetiapine, bupropion, pheniramine, bromopheniramine) and evaluating its potential as a low-cost, rapid and selective method of analysis.


Assuntos
Anfetaminas/urina , Corantes/química , Polímeros Molecularmente Impressos , Polímeros/química , Detecção do Abuso de Substâncias/métodos , Urina/química , Anfetamina/urina , Bromofeniramina/urina , Bupropiona/urina , Relação Dose-Resposta a Droga , Técnicas Eletroquímicas , Reações Falso-Positivas , Humanos , Ibuprofeno/urina , Limite de Detecção , Impressão Molecular , Naproxeno/urina , Feniramina/urina , Piperidinas/urina , Pós , Fumarato de Quetiapina/urina
7.
Sens Actuators B Chem ; 325: 128973, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33012991

RESUMO

Molecularly imprinted polymers (MIPs) have emerged over the past few decades as interesting synthetic alternatives due to their long-term chemical and physical stability and low-cost synthesis procedure. They have been integrated into many sensing platforms and assay formats for the detection of various targets, ranging from small molecules to macromolecular entities such as pathogens and whole cells. Despite the advantages MIPs have over natural receptors in terms of commercialization, the striking success stories of biosensor applications such as the glucose meter or the self-test for pregnancy have not been matched by MIP-based sensor or detection kits yet. In this review, we zoom in on the commercial potential of MIP technology and aim to summarize the latest developments in their commercialization and integration into sensors and assays with high commercial potential. We will also analyze which bottlenecks are inflicting with commercialization and how recent advances in commercial MIP synthesis could overcome these obstacles in order for MIPs to truly achieve their commercial potential in the near future.

8.
ACS Omega ; 5(33): 21054-21066, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32875242

RESUMO

A charge-transfer (CT) interaction between 1,3,5-trinitro-2,4-dimethylbenzene (TNX) and anionic phosphate is evaluated, yielding a high band electronic transfer interaction that can be observed as a distinct color change when phosphate is present in solution. The induced interaction was studied using 1H NMR, UV-visible, and Fourier transform infrared spectroscopies. The stoichiometric determination of the interaction was divined by means of continuous variation, applying the Schaeppi-Treadwell method to calculate the binding constant (k). Furthermore, the effect of the polarity of solvents toward the generation of the CT interaction was examined, with multiple solvents considered. Complex deconstruction studies were undertaken, examining the effects of water on complex destruction and understanding the volumes needed to hinder the CT interaction potency. Specificity and selectivity of the CT interaction were also studied against other biologically relevant species (CH3CH2OH, Na+, K+, Ca2+, Cl-, HCO3 -, F-, CH3COO-, and SO4 2-), assessing the capabilities of the assay to differentiate anionic species and counter cations that could act as interferences. The role of TNX concentration in CT formation was also analyzed, aiming to optimize the phosphate-sensing assay and improve its limit of detection. The sensing platform was subsequently used to study phosphate concentrations in urine samples to further understand its potential application in biomedical research. To validate the developed technique, urine samples were analyzed for their phosphate content with both the developed sensor and a validated vanadate-molybdate reagent. The results indicate that the sensing method is capable of accurately reporting elevated phosphate levels in urine samples in a rapid and sensitive manner, illustrating that the colorimetric test could be used as a prescreening test for conditions such as hyperphosphatemia or chronic kidney disease.

9.
Nutrients ; 10(6)2018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-29891757

RESUMO

Vitamin K was originally discovered as a cofactor required to activate clotting factors and has recently been shown to play a key role in the regulation of soft tissue calcification. This property of vitamin K has led to an increased interest in novel methods for accurate vitamin K detection. Molecularly Imprinted Polymers (MIPs) could offer a solution, as they have been used as synthetic receptors in a large variety of biomimetic sensors for the detection of similar molecules over the past few decades, because of their robust nature and remarkable selectivity. In this article, the authors introduce a novel imprinting approach to create a MIP that is able to selectively rebind vitamin K1. As the native structure of the vitamin does not allow for imprinting, an alternative imprinting strategy was developed, using the synthetic compound menadione (vitamin K3) as a template. Target rebinding was analyzed by means of UV-visible (UV-VIS) spectroscopy and two custom-made thermal readout techniques. This analysis reveals that the MIP-based sensor reacts to an increasing concentration of both menadione and vitamin K1. The Limit of Detection (LoD) for both compounds was established at 700 nM for the Heat Transfer Method (HTM), while the optimized readout approach, Thermal Wave Transport Analysis (TWTA), displayed an increased sensitivity with a LoD of 200 nM. The sensor seems to react to a lesser extent to Vitamin E, the analogue under study. To further demonstrate its potential application in biochemical research, the sensor was used to measure the absorption of vitamin K in blood serum after taking vitamin K supplements. By employing a gradual enrichment strategy, the sensor was able to detect the difference between baseline and peak absorption samples and was able to quantify the vitamin K concentration in good agreement with a validation experiment using High-Performance Liquid Chromatography (HPLC). In this way, the authors provide a first proof of principle for a low-cost, straightforward, and label-free vitamin K sensor.


Assuntos
Materiais Biomiméticos , Técnicas Biossensoriais , Impressão Molecular/métodos , Polímeros/síntese química , Vitamina K 1/metabolismo , Sítios de Ligação , Biomarcadores/metabolismo , Cromatografia Líquida de Alta Pressão , Humanos , Limite de Detecção , Teste de Materiais , Estudo de Prova de Conceito , Ligação Proteica , Conformação Proteica , Reprodutibilidade dos Testes , Espectrofotometria Ultravioleta , Relação Estrutura-Atividade , Vitamina K 1/sangue , Vitamina K 1/química , Vitamina K 3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...